diff options
-rw-r--r-- | README.md | 62 |
1 files changed, 49 insertions, 13 deletions
@@ -1,9 +1,9 @@ # pytorch_ema -A very small library for computing exponential moving averages of model +A small library for computing exponential moving averages of model parameters. -This library was written for personal use. Nevertheless, if you run into issues +This library was originally written for personal use. Nevertheless, if you run into issues or have suggestions for improvement, feel free to open either a new issue or pull request. @@ -13,7 +13,9 @@ pull request. pip install -U git+https://github.com/fadel/pytorch_ema ``` -## Example +## Usage + +### Example ```python import torch @@ -38,7 +40,8 @@ for _ in range(20): optimizer.zero_grad() loss.backward() optimizer.step() - ema.update(model.parameters()) + # Update the moving average with the new parameters from the last optimizer step + ema.update() # Validation: original model.eval() @@ -47,13 +50,46 @@ loss = F.cross_entropy(logits, y_val) print(loss.item()) # Validation: with EMA -# First save original parameters before replacing with EMA version -ema.store(model.parameters()) -# Copy EMA parameters to model -ema.copy_to(model.parameters()) -logits = model(x_val) -loss = F.cross_entropy(logits, y_val) -print(loss.item()) -# Restore original parameters to resume training later -ema.restore(model.parameters()) +# the .average_parameters() context manager +# (1) saves original parameters before replacing with EMA version +# (2) copies EMA parameters to model +# (3) after exiting the `with`, restore original parameters to resume training later +with ema.average_parameters(): + logits = model(x_val) + loss = F.cross_entropy(logits, y_val) + print(loss.item()) +``` + +### Manual validation mode + +While the `average_parameters()` context manager is convinient, you can also manually execute the same series of operations: +```python +ema.store() +ema.copy_to() +# ... +ema.restore() +``` + +### Custom parameters + +By default the methods of `ExponentialMovingAverage` act on the model parameters the object was constructed with, but any compatable iterable of parameters can be passed to any method (such as `store()`, `copy_to()`, `update()`, `restore()`, and `average_parameters()`): +```python +model = torch.nn.Linear(10, 2) +model2 = torch.nn.Linear(10, 2) +ema = ExponentialMovingAverage(model.parameters(), decay=0.995) +# train +# calling `ema.update()` will use `model.parameters()` +ema.copy_to(model2) +# model2 now contains the averaged weights ``` + +### Resuming training + +Like a PyTorch optimizer, `ExponentialMovingAverage` objects have `state_dict()`/`load_state_dict()` methods to allow pausing, serializing, and restarting training without loosing shadow parameters, stored parameters, or the update count. + +### GPU/device support + +`ExponentialMovingAverage` objects have a `.to()` function (like `torch.Tensor`) that can move the object's internal state to a different device or floating-point dtype. + + +For more details on individual methods, please check the docstrings.
\ No newline at end of file |