aboutsummaryrefslogtreecommitdiff
path: root/tests/test_ema.py
diff options
context:
space:
mode:
Diffstat (limited to 'tests/test_ema.py')
-rw-r--r--tests/test_ema.py42
1 files changed, 0 insertions, 42 deletions
diff --git a/tests/test_ema.py b/tests/test_ema.py
index 67a14dc..aa43b14 100644
--- a/tests/test_ema.py
+++ b/tests/test_ema.py
@@ -1,7 +1,5 @@
import pytest
-import copy
-
import torch
from torch_ema import ExponentialMovingAverage
@@ -136,43 +134,3 @@ def test_explicit_params():
ema.update(model2.parameters())
ema.copy_to()
assert not torch.all(model.weight == 0.0)
-
-
-@pytest.mark.parametrize("decay", [0.995])
-@pytest.mark.parametrize("use_num_updates", [True, False])
-@pytest.mark.parametrize("explicit_params", [True, False])
-def test_state_dict(decay, use_num_updates, explicit_params):
- model = torch.nn.Linear(10, 2, bias=False)
- with torch.no_grad():
- model.weight.fill_(0.0)
- ema = ExponentialMovingAverage(
- model.parameters(),
- decay=decay,
- use_num_updates=False
- )
- state_dict = copy.deepcopy(ema.state_dict())
-
- model2 = torch.nn.Linear(10, 2, bias=False)
- ema2 = ExponentialMovingAverage(model2.parameters(), decay=0.0)
- ema2.load_state_dict(state_dict)
- assert ema2.decay == decay
- assert torch.allclose(ema2.shadow_params[0], ema.shadow_params[0])
-
- with torch.no_grad():
- model2.weight.fill_(1.0)
- if explicit_params:
- ema2.update(model2.parameters())
- else:
- ema2.update()
- assert torch.all(model2.weight == 1.0), "ema.update changed model weights"
-
- ema.load_state_dict(ema2.state_dict())
-
- if explicit_params:
- ema.copy_to(model.parameters())
- else:
- ema.copy_to()
- assert torch.allclose(
- model.weight,
- torch.full(size=(1,), fill_value=(1.0 - decay))
- ), "average was wrong"