from __future__ import division from __future__ import unicode_literals from typing import Iterable import torch # Partially based on: # https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/training/moving_averages.py class ExponentialMovingAverage: """ Maintains (exponential) moving average of a set of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; usually the result of `model.parameters()`. decay: The exponential decay. use_num_updates: Whether to use number of updates when computing averages. """ def __init__( self, parameters: Iterable[torch.nn.Parameter], decay: float, use_num_updates: bool = True ): if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.decay = decay self.num_updates = 0 if use_num_updates else None self.shadow_params = [p.clone().detach() for p in parameters if p.requires_grad] self.collected_params = [] def update(self, parameters: Iterable[torch.nn.Parameter]) -> None: """ Update currently maintained parameters. Call this every time the parameters are updated, such as the result of the `optimizer.step()` call. Args: parameters: Iterable of `torch.nn.Parameter`; usually the same set of parameters used to initialize this object. """ decay = self.decay if self.num_updates is not None: self.num_updates += 1 decay = min( decay, (1 + self.num_updates) / (10 + self.num_updates) ) one_minus_decay = 1.0 - decay with torch.no_grad(): parameters = [p for p in parameters if p.requires_grad] for s_param, param in zip(self.shadow_params, parameters): tmp = (s_param - param) # tmp will be a new tensor so we can do in-place tmp.mul_(one_minus_decay) s_param.sub_(tmp) def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None: """ Copy current parameters into given collection of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored moving averages. """ for s_param, param in zip(self.shadow_params, parameters): if param.requires_grad: param.data.copy_(s_param.data) def store(self, parameters: Iterable[torch.nn.Parameter]) -> None: """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. """ self.collected_params = [param.clone() for param in parameters if param.requires_grad] def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None: """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. """ for c_param, param in zip(self.collected_params, parameters): if param.requires_grad: param.data.copy_(c_param.data)