1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
import pytest
import torch
from torch_ema import ExponentialMovingAverage
@pytest.mark.parametrize("decay", [0.995, 0.9])
@pytest.mark.parametrize("use_num_updates", [True, False])
@pytest.mark.parametrize("explicit_params", [True, False])
def test_val_error(decay, use_num_updates, explicit_params):
"""Confirm that EMA validation error is lower than raw validation error."""
torch.manual_seed(0)
x_train = torch.rand((100, 10))
y_train = torch.rand(100).round().long()
x_val = torch.rand((100, 10))
y_val = torch.rand(100).round().long()
model = torch.nn.Linear(10, 2)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
ema = ExponentialMovingAverage(
model.parameters(),
decay=decay,
use_num_updates=use_num_updates
)
# Train for a few epochs
model.train()
for _ in range(20):
logits = model(x_train)
loss = torch.nn.functional.cross_entropy(logits, y_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if explicit_params:
ema.update(model.parameters())
else:
ema.update()
# Validation: original
model.eval()
logits = model(x_val)
loss_orig = torch.nn.functional.cross_entropy(logits, y_val)
# Validation: with EMA
# First save original parameters before replacing with EMA version
if explicit_params:
ema.store(model.parameters())
else:
ema.store()
# Copy EMA parameters to model
if explicit_params:
ema.copy_to(model.parameters())
else:
ema.copy_to()
logits = model(x_val)
loss_ema = torch.nn.functional.cross_entropy(logits, y_val)
assert loss_ema < loss_orig, "EMA loss wasn't lower"
# Test restore
if explicit_params:
ema.restore(model.parameters())
else:
ema.restore()
model.eval()
logits = model(x_val)
loss_orig2 = torch.nn.functional.cross_entropy(logits, y_val)
assert torch.allclose(loss_orig, loss_orig2), \
"Restored model wasn't the same as stored model"
@pytest.mark.parametrize("decay", [0.995, 0.9, 0.0, 1.0])
@pytest.mark.parametrize("use_num_updates", [True, False])
@pytest.mark.parametrize("explicit_params", [True, False])
def test_store_restore(decay, use_num_updates, explicit_params):
model = torch.nn.Linear(10, 2)
ema = ExponentialMovingAverage(
model.parameters(),
decay=decay,
use_num_updates=use_num_updates
)
orig_weight = model.weight.clone().detach()
if explicit_params:
ema.store(model.parameters())
else:
ema.store()
with torch.no_grad():
model.weight.uniform_(0.0, 1.0)
if explicit_params:
ema.restore(model.parameters())
else:
ema.restore()
assert torch.all(model.weight == orig_weight)
@pytest.mark.parametrize("decay", [0.995, 0.9, 0.0, 1.0])
@pytest.mark.parametrize("explicit_params", [True, False])
def test_update(decay, explicit_params):
model = torch.nn.Linear(10, 2, bias=False)
with torch.no_grad():
model.weight.fill_(0.0)
ema = ExponentialMovingAverage(
model.parameters(),
decay=decay,
use_num_updates=False
)
with torch.no_grad():
model.weight.fill_(1.0)
if explicit_params:
ema.update(model.parameters())
else:
ema.update()
assert torch.all(model.weight == 1.0), "ema.update changed model weights"
if explicit_params:
ema.copy_to(model.parameters())
else:
ema.copy_to()
assert torch.allclose(
model.weight,
torch.full(size=(1,), fill_value=(1.0 - decay))
), "average was wrong"
def test_explicit_params():
model = torch.nn.Linear(10, 2)
with torch.no_grad():
model.weight.fill_(0.0)
ema = ExponentialMovingAverage(model.parameters(), decay=0.9)
model2 = torch.nn.Linear(10, 2)
with torch.no_grad():
model2.weight.fill_(1.0)
ema.update(model2.parameters())
ema.copy_to()
assert not torch.all(model.weight == 0.0)
|