1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
from __future__ import division
from __future__ import unicode_literals
import torch
# Partially based on: https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/training/moving_averages.py
class ExponentialMovingAverage:
"""
Maintains (exponential) moving average of a set of parameters.
"""
def __init__(self, parameters, decay, use_num_updates=True):
"""
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the result of
`model.parameters()`.
decay: The exponential decay.
use_num_updates: Whether to use number of updates when computing
averages.
"""
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.decay = decay
self.num_updates = 0 if use_num_updates else None
self.shadow_params = [p.clone().detach()
for p in parameters if p.requires_grad]
def update(self, parameters):
"""
Update currently maintained parameters.
Call this every time the parameters are updated, such as the result of
the `optimizer.step()` call.
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the same set of
parameters used to initialize this object.
"""
decay = self.decay
if self.num_updates is not None:
self.num_updates += 1
decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - decay
with torch.no_grad():
parameters = [p for p in parameters if p.requires_grad]
for s_param, param in zip(self.shadow_params, parameters):
s_param.sub_(one_minus_decay * (s_param - param))
def copy_to(self, parameters):
"""
Copies current parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages.
"""
self.collected_parameters = []
for s_param, param in zip(self.shadow_params, parameters):
self.collected_parameters.append(param.clone())
if param.requires_grad:
param.data.copy_(s_param.data)
def store(self, parameters):
"""
Save the current parameters for restore.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages.
"""
self.collected_parameters = []
for param in parameters:
self.collected_parameters.append(param.clone())
def restore(self, parameters):
"""
Restore the parameters from the `store` function.
Usually used in validation. Want to validate the model with EMA parameters without affecting the original optimization process.
Store the parameters before the `copy_to` function.
After the validation(or model saving), restore the former parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages.
"""
for c_param, param in zip(self.collected_parameters, parameters):
if param.requires_grad:
param.data.copy_(c_param.data)
|