aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSamuel Fadel <samuelfadel@gmail.com>2015-06-03 18:53:21 -0300
committerSamuel Fadel <samuelfadel@gmail.com>2015-06-03 18:53:21 -0300
commitea663237d22ea58a7a016b65a6e7b92457fdf812 (patch)
tree0a85f1dcebaf7bd8e5abd995bcc6ff45d359a9a6
parent4580cffb564aa3018d4dbcfe57b365deedfac62b (diff)
Updated colors and shape scales.
-rw-r--r--tests.R187
1 files changed, 99 insertions, 88 deletions
diff --git a/tests.R b/tests.R
index d56114c..65ed46d 100644
--- a/tests.R
+++ b/tests.R
@@ -9,140 +9,151 @@ automated.m <- function(D, labels) {
for (label in unique(labels)) {
same.label <- labels == label
D.m[same.label, same.label] <- D[same.label, same.label] * 0.1
- #D.m[same.label, diff.label] <- D[same.label, diff.label] * 10
- #D.m[diff.label, same.label] <- D.m[same.label, diff.label]
}
D.m
}
-xy.df <- function(M) {
- M <- as.data.frame(M)
- names(M) <- c("x", "y")
-
- M
-}
-
test <- function(file, suffix, output.dir) {
- cat("Testing dataset ", file, "...\n")
+ message("Testing dataset ", file)
dataset <- read.table(file)
# Extract labels
- labels <- dataset[, ncol(dataset)]
-
- # Remove labels from dataset
+ labels <- dataset[, ncol(dataset)]
+ classes <- as.factor(labels)
X <- dataset[, -ncol(dataset)]
-
+
n <- nrow(X)
# Calculate distances (X) and normalize
+ message("\tCalculating dist(X)")
Dx <- dist(X)
Dx <- Dx / mean(Dx)
Dx <- as.matrix(Dx)
+ # Sample dataset
sample.indices <- sample(n, 3*sqrt(n))
+ classes.s <- as.factor(labels[sample.indices])
+
+ # Automatic sample positioning
+ message("\tCalculating Ys")
Dx.s <- Dx[sample.indices, sample.indices]
Ys <- forceScheme(Dx.s)
- Ys <- xy.df(Ys)
- Y <- lamp(X, sample.indices, Ys)
- Y <- xy.df(Y)
- # Plot mapping
- classes <- as.factor(labels)
- classes.s <- as.factor(labels[sample.indices])
- p.s <- ggplot(cbind(Ys, classes.s), aes(x = x, y = y, colour = classes.s)) + geom_point()
- p <- ggplot(cbind(Y, classes), aes(x = x, y = y, colour = classes)) + geom_point()
- pdf(paste(output.dir, "original-", suffix, ".pdf", sep=""), width = 10, height = 5)
- grid.arrange(p.s, p,
- widths = unit(rep_len(3, 2), "null"),
- heights = unit(rep_len(1, 2), "null"),
- ncol=2)
- dev.off()
- png(paste(output.dir, "original-", suffix, ".png", sep=""), width = 1200, height = 600)
- grid.arrange(p.s, p,
- widths = unit(rep_len(3, 2), "null"),
- heights = unit(rep_len(1, 2), "null"),
- ncol=2)
- dev.off()
+ # LAMP
+ message("\tCalculating Y")
+ Y <- lamp(X, sample.indices, Ys)
# Calculate distances (Y) and normalize
+ message("\tCalculating dist(Y)")
Dy <- dist(Y)
Dy <- Dy / mean(Dy)
Dy <- as.matrix(Dy)
- # Calculate measures and plot
+ message("\tCalculating P and Q")
sigmas <- vector("numeric", n)
sigmas[] <- 1
P <- d2p(Dx, sigmas)
Q <- d2p(Dy, sigmas)
- np = NP(Dx, Dy)
- #stress = stress(Dx, Dy),
+
+ # Calculate measures
+ message("\tCalculating measures")
+ np <- NP(Dx, Dy)
precision <- klDivergence(Q, P)
recall <- klDivergence(P, Q)
- p.np <- ggplot(cbind(Y, np), aes(x = x, y = y, colour = np)) + geom_point() + labs(title = "NP (9)")
- p.precision <- ggplot(cbind(Y, precision), aes(x = x, y = y, colour = precision)) + geom_point() + labs(title = "Precision")
- p.recall <- ggplot(cbind(Y, recall), aes(x = x, y = y, colour = recall)) + geom_point() + labs(title = "Recall")
- pdf(paste(output.dir, "measures-original-", suffix, ".pdf", sep=""), width = 15, height = 5)
- grid.arrange(p.np, p.precision, p.recall,
- widths = unit(rep_len(3, 3), "null"),
- heights = unit(rep_len(1, 3), "null"),
- ncol=3)
- dev.off()
- png(paste(output.dir, "measures-original-", suffix, ".png", sep=""), width = 1800, height = 600)
- grid.arrange(p.np, p.precision, p.recall,
- widths = unit(rep_len(3, 3), "null"),
- heights = unit(rep_len(1, 3), "null"),
- ncol=3)
+
+ # Plot results
+ #color_scale <- scale_colour_gradientn(colours = c("#e46c0a", "#dddddd", "#376092"))
+ color_scale <- scale_colour_gradient2(mid = "#dddddd", space = "Lab")
+ shape_scale <- scale_shape(solid = FALSE)
+ Ys <- cbind(as.data.frame(Ys), classes.s)
+ Y <- cbind(as.data.frame(Y), classes, np, precision, recall)
+ p.s <- ggplot(Ys) +
+ theme_bw() +
+ labs(x = "", y = "") +
+ geom_point(aes(x = V1, y = V2, shape = classes.s, colour = classes.s)) +
+ shape_scale
+ p <- ggplot(Y) +
+ theme_bw() +
+ labs(x = "", y = "") +
+ geom_point(aes(x = V1, y = V2, shape = classes, colour = classes)) +
+ shape_scale
+ p.np <- ggplot(Y) +
+ theme_bw() +
+ labs(x = "", y = "", title = "NP (9)") +
+ geom_point(aes(x = V1, y = V2, shape = classes, colour = np)) +
+ shape_scale + color_scale
+ p.precision <- ggplot(Y) +
+ theme_bw() +
+ labs(x = "", y = "", title = "Precision") +
+ geom_point(aes(x = V1, y = V2, shape = classes, colour = precision)) +
+ shape_scale + color_scale
+ p.recall <- ggplot(Y) +
+ theme_bw() +
+ labs(x = "", y = "", title = "Recall") +
+ geom_point(aes(x = V1, y = V2, shape = classes, colour = recall)) +
+ shape_scale + color_scale
+
+ pdf(paste(output.dir, "original-", suffix, ".pdf", sep=""), width = 16, height = 8)
+ grid.arrange(p.s, p, p.np, p.precision, p.recall, ncol=3)
dev.off()
# Perform manipulation
+ message("\tCalculating Ys.m")
Dx.m <- automated.m(Dx.s, labels[sample.indices])
Ys.m <- forceScheme(Dx.m)
- Ys.m <- xy.df(Ys.m)
- Y.m <- lamp(X, sample.indices, Ys.m)
- Y.m <- xy.df(Y.m)
-
- # Plot mapping
- p.s <- ggplot(cbind(Ys.m, classes.s), aes(x = x, y = y, colour = classes.s)) + geom_point()
- p <- ggplot(cbind(Y.m, classes), aes(x = x, y = y, colour = classes)) + geom_point()
- pdf(paste(output.dir, "manip-", suffix, ".pdf", sep=""), width = 10, height = 5)
- grid.arrange(p.s, p,
- widths = unit(rep_len(3, 2), "null"),
- heights = unit(rep_len(1, 2), "null"),
- ncol=2)
- dev.off()
- png(paste(output.dir, "manip-", suffix, ".png", sep=""), width = 1200, height = 600)
- grid.arrange(p.s, p,
- widths = unit(rep_len(3, 2), "null"),
- heights = unit(rep_len(1, 2), "null"),
- ncol=2)
- dev.off()
+
+ # LAMP
+ message("\tCalculating Y.m")
+ Y.m <- lamp(X, sample.indices, Ys.m)
# Calculate distances (Y.m) and normalize
+ message("\tCalculating dist(Y.m)")
Dy <- dist(Y.m)
Dy <- Dy / mean(Dy)
Dy <- as.matrix(Dy)
- Q <- d2p(Dy, sigmas)
- # Calculate measures and plot
- np = np - NP(Dx, Dy)
- #stress = stress(Dx, Dy),
+ message("\tCalculating Q")
+ Q <- d2p(Dy, sigmas)
+
+ # Calculate measures
+ message("\tCalculating measures")
+ np <- np - NP(Dx, Dy)
precision <- precision - klDivergence(Q, P)
recall <- recall - klDivergence(P, Q)
- p.np <- ggplot(cbind(Y.m, np), aes(x = x, y = y, colour = np)) + geom_point() + labs(title = "NP (9)")
- p.precision <- ggplot(cbind(Y.m, precision), aes(x = x, y = y, colour = precision)) + geom_point() + labs(title = "Precision")
- p.recall <- ggplot(cbind(Y.m, recall), aes(x = x, y = y, colour = recall)) + geom_point() + labs(title = "Recall")
- pdf(paste(output.dir, "measures-manip-", suffix, ".pdf", sep=""), width = 15, height = 5)
- grid.arrange(p.np, p.precision, p.recall,
- widths = unit(rep_len(3, 3), "null"),
- heights = unit(rep_len(1, 3), "null"),
- ncol=3)
- dev.off()
- png(paste(output.dir, "measures-manip-", suffix, ".png", sep=""), width = 1800, height = 600)
- grid.arrange(p.np, p.precision, p.recall,
- widths = unit(rep_len(3, 3), "null"),
- heights = unit(rep_len(1, 3), "null"),
- ncol=3)
+
+ # Plot results
+ Ys.m <- cbind(as.data.frame(Ys.m), classes.s)
+ Y.m <- cbind(as.data.frame(Y.m), classes, np, precision, recall)
+ p.s <- ggplot(cbind(Ys.m, classes.s)) +
+ theme_bw() +
+ labs(x = "", y = "") +
+ geom_point(aes(x = V1, y = V2, shape = classes.s, colour = classes.s)) +
+ scale_shape_identity() +
+ shape_scale
+ p <- ggplot(cbind(Y.m, classes)) +
+ theme_bw() +
+ labs(x = "", y = "") +
+ geom_point(aes(x = V1, y = V2, shape = classes, colour = classes)) +
+ shape_scale
+ p.np <- ggplot(cbind(Y.m, np)) +
+ theme_bw() +
+ labs(x = "", y = "", title = "NP (9)") +
+ geom_point(aes(x = V1, y = V2, shape = classes, colour = np)) +
+ shape_scale + color_scale
+ p.precision <- ggplot(cbind(Y.m, precision)) +
+ theme_bw() +
+ labs(x = "", y = "", title = "Precision") +
+ geom_point(aes(x = V1, y = V2, shape = classes, colour = precision)) +
+ shape_scale + color_scale
+ p.recall <- ggplot(cbind(Y.m, recall)) +
+ theme_bw() +
+ labs(x = "", y = "", title = "Recall") +
+ geom_point(aes(x = V1, y = V2, shape = classes, colour = recall)) +
+ shape_scale + color_scale
+
+ pdf(paste(output.dir, "manip-", suffix, ".pdf", sep=""), width = 16, height = 8)
+ grid.arrange(p.s, p, p.np, p.precision, p.recall, ncol=3)
dev.off()
}