aboutsummaryrefslogtreecommitdiff
path: root/datasets/segmentation
diff options
context:
space:
mode:
authorSamuel Fadel <samuelfadel@gmail.com>2016-08-19 14:20:57 -0300
committerSamuel Fadel <samuelfadel@gmail.com>2016-08-19 14:20:57 -0300
commitb255338295587246292dc978e7d4d5687ee01fb4 (patch)
tree1581b76a03f4929c5132dcb3c6920fa761f8261c /datasets/segmentation
parentfbf8d82cdd3720c4bbf2a94035b6779e56d73448 (diff)
Scripts and other files for building all datasets.
Diffstat (limited to 'datasets/segmentation')
-rw-r--r--datasets/segmentation/segmentation_extract.py39
-rw-r--r--datasets/segmentation/source1
2 files changed, 40 insertions, 0 deletions
diff --git a/datasets/segmentation/segmentation_extract.py b/datasets/segmentation/segmentation_extract.py
new file mode 100644
index 0000000..e621161
--- /dev/null
+++ b/datasets/segmentation/segmentation_extract.py
@@ -0,0 +1,39 @@
+import hashlib
+import logging
+import pandas as pd
+import os
+import os.path
+import wget
+
+
+DATA_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/image/segmentation.test"
+DATA_SHA256 = "2e9e966479d54c6aaec309059376dd9c89c1b46bf3a23aceeefb36d20d93a189"
+DATA_FILE = "segmentation.test"
+
+
+if __name__ == "__main__":
+ logging.basicConfig(filename="segmentation_extract.log",
+ format="%(levelname)s:%(message)s",
+ level=logging.INFO)
+
+ if not os.path.exists(DATA_FILE):
+ logging.info("Downloading '{}'".format(DATA_URL))
+ wget.download(DATA_URL, DATA_FILE)
+ with open(DATA_FILE, "rb") as f:
+ if hashlib.sha256(f.read()).hexdigest() != DATA_SHA256:
+ logging.error("{} is corrupted; aborting".format(DATA_FILE))
+
+
+ df = pd.read_table(DATA_FILE, header=None, skiprows=4, delimiter=",")
+
+ # First column contains class names, which we convert to numbers using the
+ # 'class_labels' dict
+ classes = set(df[0])
+ numbers = [i for i in range(len(classes))]
+ class_labels = dict(zip(classes, numbers))
+
+ data = df.drop([0, 3], axis=1)
+ data.to_csv("segmentation.tbl", sep=" ", index=False, header=False)
+
+ labels = df[0].apply(lambda x: class_labels[x])
+ labels.to_csv("segmentation.labels", sep=" ", index=False, header=False)
diff --git a/datasets/segmentation/source b/datasets/segmentation/source
new file mode 100644
index 0000000..ab98436
--- /dev/null
+++ b/datasets/segmentation/source
@@ -0,0 +1 @@
+https://archive.ics.uci.edu/ml/datasets/Image+Segmentation