aboutsummaryrefslogtreecommitdiff
path: root/voronoisplat.cpp
blob: 7695d979439455a649e3f6d6c9fd8195a18d05a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
#include "voronoisplat.h"

#include <algorithm>

#include <QQuickWindow>
#include <QOpenGLFramebufferObject>

#include "scale.h"
#include "skelft.h"

static const float RAD_BLUR = 5.0f;
static const int COLORMAP_SAMPLES = 128;
static const float PADDING = 10.0f; // in screen pixels

static int nextPow2(int n)
{
    // TODO: check for overflows
    n--;
    for (int shift = 1; ((n + 1) & n); shift <<= 1) {
        n |= n >> shift;
    }
    return n + 1;
}

VoronoiSplatTexture::VoronoiSplatTexture(const QSize &size)
    : gl(QOpenGLContext::currentContext())
    , m_cmap(3*COLORMAP_SAMPLES)
{
    int baseSize = nextPow2(std::min(size.width(), size.height()));
    m_size.setWidth(baseSize);
    m_size.setHeight(baseSize);

    gl.glGenFramebuffers(1, &m_FBO);
    setupShaders();
    setupVAOs();
    setupTextures();
}

void VoronoiSplatTexture::setupShaders()
{
    m_program1 = new QOpenGLShaderProgram;
    m_program1->addShaderFromSourceCode(QOpenGLShader::Vertex,
R"EOF(#version 440

uniform float rad_blur;
uniform float rad_max;
uniform float fb_size;

in vec2 vert;
in float scalar;

out float value;

void main() {
  gl_PointSize = (rad_max + rad_blur) * 2.0;
  gl_Position = vec4(2.0 * vert / fb_size - 1.0, 0, 1.0);
  value = scalar;
}
)EOF");
    m_program1->addShaderFromSourceCode(QOpenGLShader::Fragment,
R"EOF(#version 440

uniform float rad_blur;
uniform float rad_max;
uniform sampler2D siteDT;

in float value;

layout (location = 0) out vec4 fragColor;

void main() {
  float dt = texelFetch(siteDT, ivec2(gl_FragCoord.xy), 0).r;
  if (dt > rad_max)
    discard;
  else {
    float r = distance(gl_PointCoord, vec2(0.5, 0.5)) * (rad_max + rad_blur) * 2.0;
    float r2 = r * r;
    float rad = dt + rad_blur;
    float rad2 = rad * rad;
    if (r2 > rad2)
      discard;
    else {
      float w = exp(-5.0 * r2 / rad2);
      fragColor = vec4(w * value, w, 0.0, 0.0);
    }
  }
}
)EOF");
    m_program1->link();

    m_program2 = new QOpenGLShaderProgram;
    m_program2->addShaderFromSourceCode(QOpenGLShader::Vertex,
R"EOF(#version 440

in vec2 vert;

void main() {
  gl_Position = vec4(vert, 0, 1);
}
)EOF");
    m_program2->addShaderFromSourceCode(QOpenGLShader::Fragment,
R"EOF(
#version 440

uniform sampler2D siteDT;
uniform sampler2D accumTex;
uniform sampler2D colormap;
uniform float rad_max;

layout (location = 0) out vec4 fragColor;

vec3 getRGB(float value) {
  return texture(colormap, vec2(mix(0, 1, value), 0)).rgb;
}

void main() {
  float dt = texelFetch(siteDT, ivec2(gl_FragCoord.xy), 0).r;
  if (dt > rad_max)
    discard;
  else {
    vec4 accum = texelFetch(accumTex, ivec2(gl_FragCoord.xy), 0);
    // 1.0 is extra-accumulated because of white background
    float value = 0.0f;
    if (accum.g > 1.0)
      value = (accum.r - 1.0) / (accum.g - 1.0);
    fragColor.rgb = getRGB(value);
    fragColor.a = 1.0 - dt / rad_max;
  }
}
)EOF");
    m_program2->link();
}

void VoronoiSplatTexture::setupVAOs()
{
    gl.glGenBuffers(3, m_VBOs);

    // sitesVAO: VBOs 0 & 1 are for sites & their values (init'd later)
    m_sitesVAO.create();
    m_sitesVAO.bind();
    gl.glBindBuffer(GL_ARRAY_BUFFER, m_VBOs[0]);
    int vertAttrib = m_program1->attributeLocation("vert");
    gl.glVertexAttribPointer(vertAttrib, 2, GL_FLOAT, GL_FALSE, 0, 0);
    gl.glEnableVertexAttribArray(vertAttrib);

    gl.glBindBuffer(GL_ARRAY_BUFFER, m_VBOs[1]);
    int valueAttrib = m_program1->attributeLocation("scalar");
    gl.glVertexAttribPointer(valueAttrib, 1, GL_FLOAT, GL_FALSE, 0, 0);
    gl.glEnableVertexAttribArray(valueAttrib);
    m_sitesVAO.release();

    // 2ndPassVAO: VBO 2 is a quad mapping the final texture to the framebuffer
    m_2ndPassVAO.create();
    m_2ndPassVAO.bind();
    gl.glBindBuffer(GL_ARRAY_BUFFER, m_VBOs[2]);
    GLfloat verts[] = {-1.0f, -1.0f, -1.0f, 1.0f,
                        1.0f, -1.0f,  1.0f, 1.0f};
    gl.glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW);

    vertAttrib = m_program2->attributeLocation("vert");
    gl.glVertexAttribPointer(vertAttrib, 2, GL_FLOAT, GL_FALSE, 0, 0);
    gl.glEnableVertexAttribArray(vertAttrib);
    m_2ndPassVAO.release();
}

void VoronoiSplatTexture::setupTextures()
{
    gl.glGenTextures(2, m_textures);

    // textures[0] stores the DT values for each pixel
    gl.glBindTexture(GL_TEXTURE_2D, m_textures[0]);
    gl.glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, m_size.width(),
            m_size.height(), 0, GL_RG, GL_FLOAT, 0);
    gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

    // textures[1] is the result of the first pass
    gl.glBindTexture(GL_TEXTURE_2D, m_textures[1]);
    gl.glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, m_size.width(),
            m_size.height(), 0, GL_RGBA, GL_FLOAT, 0);
    gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

    // Used for colormap lookup in the frag shader
    gl.glGenTextures(1, &m_colormapTex);
    gl.glBindTexture(GL_TEXTURE_2D, m_colormapTex);
    gl.glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, COLORMAP_SAMPLES, 1, 0, GL_RGB,
            GL_FLOAT, 0);
    gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

    // The output texture
    gl.glGenTextures(1, &m_tex);
    gl.glBindTexture(GL_TEXTURE_2D, m_tex);
    gl.glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, m_size.width(),
            m_size.height(), 0, GL_RGBA, GL_FLOAT, 0);
    gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    gl.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}

VoronoiSplatTexture::~VoronoiSplatTexture()
{
    gl.glDeleteBuffers(3, m_VBOs);
    gl.glDeleteTextures(2, m_textures);
    gl.glDeleteTextures(1, &m_colormapTex);
    gl.glDeleteTextures(1, &m_tex);

    gl.glDeleteFramebuffers(1, &m_FBO);

    delete m_program1;
    delete m_program2;
}

void VoronoiSplatTexture::bind()
{
    gl.glBindTexture(GL_TEXTURE_2D, m_tex);
}

bool VoronoiSplatTexture::updateTexture()
{
    if (!m_sitesUpdated && !m_valuesUpdated && !m_colormapUpdated) {
        // Texture is already updated
        return false;
    }

    // Update OpenGL buffers and textures as needed
    if (m_sitesUpdated) {
        updateSites();
    }
    if (m_valuesUpdated) {
        updateValues();
    }
    if (m_colormapUpdated) {
        updateColormap();
    }

    gl.glBindFramebuffer(GL_FRAMEBUFFER, m_FBO);

    // The first pass
    m_program1->bind();
    m_program1->setUniformValue("rad_max", 20.0f);
    m_program1->setUniformValue("rad_blur", RAD_BLUR);
    m_program1->setUniformValue("fb_size", float(m_size.width()));

    gl.glActiveTexture(GL_TEXTURE0);
    gl.glBindTexture(GL_TEXTURE_2D, m_textures[0]);
    m_program1->setUniformValue("siteDT", 0);

    gl.glEnable(GL_POINT_SPRITE);
    gl.glEnable(GL_PROGRAM_POINT_SIZE);
    gl.glEnable(GL_BLEND);
    gl.glBlendFunc(GL_ONE, GL_ONE);

    // In the first pass we draw to an intermediate texture, which is used as
    // input for the next pass
    gl.glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
            GL_TEXTURE_2D, m_textures[1], 0);

    gl.glClearColor(1, 1, 1, 1);
    gl.glClear(GL_COLOR_BUFFER_BIT);

    m_sitesVAO.bind();
    gl.glDrawArrays(GL_POINTS, 0, m_values.size());
    m_sitesVAO.release();

    m_program1->release();

    // Second pass
    m_program2->bind();
    m_program2->setUniformValue("rad_max", 20.0f);

    gl.glActiveTexture(GL_TEXTURE0);
    gl.glBindTexture(GL_TEXTURE_2D, m_textures[0]);
    m_program2->setUniformValue("siteDT", 0);
    gl.glActiveTexture(GL_TEXTURE1);
    gl.glBindTexture(GL_TEXTURE_2D, m_textures[1]);
    m_program2->setUniformValue("accumTex", 1);
    gl.glActiveTexture(GL_TEXTURE2);
    gl.glBindTexture(GL_TEXTURE_2D, m_colormapTex);
    m_program2->setUniformValue("colormap", 2);

    gl.glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

    // Now we render to the output texture
    gl.glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
            GL_TEXTURE_2D, m_tex, 0);

    glClearColor(1, 1, 1, 1);
    glClear(GL_COLOR_BUFFER_BIT);

    m_2ndPassVAO.bind();
    gl.glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
    m_2ndPassVAO.release();

    m_program2->release();

    return true;
}

void VoronoiSplatTexture::updateSites()
{
    // Update VBO with the new data
    gl.glBindBuffer(GL_ARRAY_BUFFER, m_VBOs[0]);
    gl.glBufferData(GL_ARRAY_BUFFER, m_sites.size() * sizeof(float),
            m_sites.data(), GL_STATIC_DRAW);

    // Compute DT values for the new positions
    computeDT();

    m_sitesUpdated = false;
}

void VoronoiSplatTexture::updateValues()
{
    // Update VBO with the new data
    gl.glBindBuffer(GL_ARRAY_BUFFER, m_VBOs[1]);
    gl.glBufferData(GL_ARRAY_BUFFER, m_values.size() * sizeof(float),
            m_values.data(), GL_DYNAMIC_DRAW);

    m_valuesUpdated = false;
}

void VoronoiSplatTexture::updateColormap()
{
    gl.glBindTexture(GL_TEXTURE_2D, m_colormapTex);
    gl.glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, COLORMAP_SAMPLES, 1, GL_RGB,
            GL_FLOAT, m_cmap.data());

    m_colormapUpdated = false;
}

void VoronoiSplatTexture::computeDT()
{
    int w = m_size.width(), h = m_size.height();

    std::vector<float> buf(w*h, 0.0f);
    for (unsigned i = 0; i < m_sites.size(); i += 2) {
        buf[int(m_sites[i + 1])*h + int(m_sites[i])] = (float) i/2 + 1;
    }

    // Compute FT of the sites
    skelft2DFT(0, buf.data(), 0, 0, w, h, w);
    // Compute DT of the sites (from the resident FT)
    skelft2DDT(buf.data(), 0, 0, w, h);

    std::vector<GLfloat> dtTexData(2*w*h, 0.0f);
    for (unsigned i = 0; i < buf.size(); i++) {
        dtTexData[2*i] = buf[i];
    }

    // Upload result to lookup texture
    gl.glBindTexture(GL_TEXTURE_2D, m_textures[0]);
    gl.glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RG, GL_FLOAT,
            dtTexData.data());
}

void VoronoiSplatTexture::setSites(const arma::mat &points)
{
    if (points.n_rows < 1 || points.n_cols != 2
        || (m_values.size() != 0 && points.n_rows != m_values.size())) {
        return;
    }

    // Copy 'points' to internal data structure(s)
    double minX = points.col(0).min();
    double maxX = points.col(0).max();
    double minY = points.col(1).min();
    double maxY = points.col(1).max();

    // Coords are tighly packed into 'm_sites' as [ (x1, y1), (x2, y2), ... ]
    m_sites.resize(2*points.n_rows);
    LinearScale<float> sx(minX, maxX, PADDING, m_size.width() - PADDING);
    const double *col = points.colptr(0);
    for (unsigned i = 0; i < points.n_rows; i++) {
        m_sites[2*i] = sx(col[i]);
    }

    col = points.colptr(1);
    LinearScale<float> sy(minY, maxY, m_size.height() - PADDING, PADDING);
    for (unsigned i = 0; i < points.n_rows; i++) {
        m_sites[2*i + 1] = sy(col[i]);
    }

    m_sitesUpdated = true;
}

void VoronoiSplatTexture::setValues(const arma::vec &values)
{
    if (values.n_elem == 0
        || (m_sites.size() != 0 && values.n_elem != m_sites.size() / 2)) {
        return;
    }

    m_values.resize(values.n_elem);
    LinearScale<float> scale(values.min(), values.max(), 0, 1.0f);
    std::transform(values.begin(), values.end(), m_values.begin(), scale);

    m_valuesUpdated = true;
}

void VoronoiSplatTexture::setColormap(const ColorScale *scale)
{
    if (!scale) {
        return;
    }

    float t = scale->min();
    float step = (scale->max() - scale->min()) / COLORMAP_SAMPLES;
    qreal r, g, b;
    for (unsigned i = 0; i < m_cmap.size(); i += 3) {
        scale->color(t).getRgbF(&r, &g, &b);
        m_cmap[i + 0] = r;
        m_cmap[i + 1] = g;
        m_cmap[i + 2] = b;

        t += step;
    }

    m_colormapUpdated = true;
}