aboutsummaryrefslogtreecommitdiff
path: root/torch_ema/ema.py
blob: 2e8eb6f00feb0109a6d1e3d008bcdd515a2a34f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from __future__ import division
from __future__ import unicode_literals

from typing import Iterable, Optional
import weakref

import torch


# Partially based on:
# https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/training/moving_averages.py
class ExponentialMovingAverage:
    """
    Maintains (exponential) moving average of a set of parameters.

    Args:
        parameters: Iterable of `torch.nn.Parameter` (typically from
            `model.parameters()`).
        decay: The exponential decay.
        use_num_updates: Whether to use number of updates when computing
            averages.
    """
    def __init__(
        self,
        parameters: Iterable[torch.nn.Parameter],
        decay: float,
        use_num_updates: bool = True
    ):
        if decay < 0.0 or decay > 1.0:
            raise ValueError('Decay must be between 0 and 1')
        self.decay = decay
        self.num_updates = 0 if use_num_updates else None
        parameters = list(parameters)
        self.shadow_params = [p.clone().detach()
                              for p in parameters if p.requires_grad]
        self.collected_params = []
        # By maintaining only a weakref to each parameter,
        # we maintain the old GC behaviour of ExponentialMovingAverage:
        # if the model goes out of scope but the ExponentialMovingAverage
        # is kept, no references to the model or its parameters will be
        # maintained, and the model will be cleaned up.
        self._params_refs = [weakref.ref(p) for p in parameters]

    def _get_parameters(
        self,
        parameters: Optional[Iterable[torch.nn.Parameter]]
    ) -> Iterable[torch.nn.Parameter]:
        if parameters is None:
            parameters = [p() for p in self._params_refs]
            if any(p is None for p in parameters):
                raise ValueError(
                    "(One of) the parameters with which this "
                    "ExponentialMovingAverage "
                    "was initialized no longer exists (was garbage collected);"
                    " please either provide `parameters` explicitly or keep "
                    "the model to which they belong from being garbage "
                    "collected."
                )
            return parameters
        else:
            return parameters

    def update(
        self,
        parameters: Optional[Iterable[torch.nn.Parameter]] = None
    ) -> None:
        """
        Update currently maintained parameters.

        Call this every time the parameters are updated, such as the result of
        the `optimizer.step()` call.

        Args:
          parameters: Iterable of `torch.nn.Parameter`; usually the same set of
            parameters used to initialize this object. If `None`, the
            parameters with which this `ExponentialMovingAverage` was
            initialized will be used.
        """
        parameters = self._get_parameters(parameters)
        decay = self.decay
        if self.num_updates is not None:
            self.num_updates += 1
            decay = min(
                decay,
                (1 + self.num_updates) / (10 + self.num_updates)
            )
        one_minus_decay = 1.0 - decay
        with torch.no_grad():
            parameters = [p for p in parameters if p.requires_grad]
            for s_param, param in zip(self.shadow_params, parameters):
                tmp = (s_param - param)
                # tmp will be a new tensor so we can do in-place
                tmp.mul_(one_minus_decay)
                s_param.sub_(tmp)

    def copy_to(
        self,
        parameters: Optional[Iterable[torch.nn.Parameter]] = None
    ) -> None:
        """
        Copy current parameters into given collection of parameters.

        Args:
          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
            updated with the stored moving averages. If `None`, the
            parameters with which this `ExponentialMovingAverage` was
            initialized will be used.
        """
        parameters = self._get_parameters(parameters)
        for s_param, param in zip(self.shadow_params, parameters):
            if param.requires_grad:
                param.data.copy_(s_param.data)

    def store(
        self,
        parameters: Optional[Iterable[torch.nn.Parameter]] = None
    ) -> None:
        """
        Save the current parameters for restoring later.

        Args:
          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
            temporarily stored. If `None`, the parameters of with which this
            `ExponentialMovingAverage` was initialized will be used.
        """
        parameters = self._get_parameters(parameters)
        self.collected_params = [param.clone()
                                 for param in parameters
                                 if param.requires_grad]


    def restore(
        self,
        parameters: Optional[Iterable[torch.nn.Parameter]] = None
    ) -> None:
        """
        Restore the parameters stored with the `store` method.
        Useful to validate the model with EMA parameters without affecting the
        original optimization process. Store the parameters before the
        `copy_to` method. After validation (or model saving), use this to
        restore the former parameters.

        Args:
          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
            updated with the stored parameters. If `None`, the
            parameters with which this `ExponentialMovingAverage` was
            initialized will be used.
        """
        parameters = self._get_parameters(parameters)
        for c_param, param in zip(self.collected_params, parameters):
            if param.requires_grad:
                param.data.copy_(c_param.data)