aboutsummaryrefslogtreecommitdiff
path: root/torch_ema/ema.py
blob: 0233c78d7570384915c012de2baacf535916cddd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from __future__ import division
from __future__ import unicode_literals

from typing import Iterable

import torch


# Partially based on:
# https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/training/moving_averages.py
class ExponentialMovingAverage:
    """
    Maintains (exponential) moving average of a set of parameters.

    Args:
        parameters: Iterable of `torch.nn.Parameter`; usually the result of
            `model.parameters()`.
        decay: The exponential decay.
        use_num_updates: Whether to use number of updates when computing
            averages.
    """
    def __init__(
        self,
        parameters: Iterable[torch.nn.Parameter],
        decay: float,
        use_num_updates: bool = True
    ):
        if decay < 0.0 or decay > 1.0:
            raise ValueError('Decay must be between 0 and 1')
        self.decay = decay
        self.num_updates = 0 if use_num_updates else None
        self.shadow_params = [p.clone().detach()
                              for p in parameters if p.requires_grad]
        self.collected_params = []

    def update(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        """
        Update currently maintained parameters.

        Call this every time the parameters are updated, such as the result of
        the `optimizer.step()` call.

        Args:
          parameters: Iterable of `torch.nn.Parameter`; usually the same set of
            parameters used to initialize this object.
        """
        decay = self.decay
        if self.num_updates is not None:
            self.num_updates += 1
            decay = min(
                decay,
                (1 + self.num_updates) / (10 + self.num_updates)
            )
        one_minus_decay = 1.0 - decay
        with torch.no_grad():
            parameters = [p for p in parameters if p.requires_grad]
            for s_param, param in zip(self.shadow_params, parameters):
                tmp = (s_param - param)
                # tmp will be a new tensor so we can do in-place
                tmp.mul_(one_minus_decay)
                s_param.sub_(tmp)

    def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        """
        Copy current parameters into given collection of parameters.

        Args:
          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
            updated with the stored moving averages.
        """
        for s_param, param in zip(self.shadow_params, parameters):
            if param.requires_grad:
                param.data.copy_(s_param.data)

    def store(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        """
        Save the current parameters for restoring later.

        Args:
          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
            temporarily stored.
        """
        self.collected_params = [param.clone()
                                 for param in parameters
                                 if param.requires_grad]

    def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        """
        Restore the parameters stored with the `store` method.
        Useful to validate the model with EMA parameters without affecting the
        original optimization process. Store the parameters before the
        `copy_to` method. After validation (or model saving), use this to
        restore the former parameters.

        Args:
          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
            updated with the stored parameters.
        """
        for c_param, param in zip(self.collected_params, parameters):
            if param.requires_grad:
                param.data.copy_(c_param.data)